6th Grade

UT SEED Standards	Next Generation Science Standards
Root Question 1	
6.1.1: Develop models to describe the atomic	MS-PS1-1. Develop models to describe the atomic
composition of simple molecules and extended	composition of simple molecules and extended
structures.	structures.
6.1.2: Develop a model that predicts and describes	MS-PS1-4. Develop a model that predicts and describes
changes in particle motion, temperature, and state of a	changes in particle motion, temperature, and state of a
pure substance when thermal energy is added or	pure substance when thermal energy is added or
removed.	removed.
6.1.3: Construct and interpret graphical displays of data	MS-PS3-1. Construct and interpret graphical displays of
to describe the relationships of kinetic energy to the	data to describe the relationships of kinetic energy to
mass of an object and to the speed of an object.	the mass of an object and to the speed of an object.
6.1.4: Apply scientific principles to design, construct,	MS-PS3-3. Apply scientific principles to design,
and test a device that either minimizes or maximizes	construct, and test a device that either minimizes or
thermal energy transfer.	maximizes thermal energy transfer.
6.1.5: Define the criteria and constraints of a design	MS-ETS1-1. Define the criteria and constraints of a
problem with sufficient precision to ensure a successful	design problem with sufficient precision to ensure a
solution, taking into account relevant scientific	successful solution, taking into account relevant
principles and potential impacts on people and the	scientific principles and potential impacts on people
natural environment that may limit possible solutions.	and the natural environment that may limit possible
	solutions.
6.1.6: Analyze data from tests to determine similarities	MS-ETS1-3. Analyze data from tests to determine
and differences among several design solutions to	similarities and differences among several design
identify the best characteristics of each that can be	solutions to identify the best characteristics of each that
combined into a new solution to better meet the	can be combined into a new solution to better meet the
criteria for success.	criteria for success.
6.1.7: Plan an investigation to determine the	MS-PS3-4. Plan an investigation to determine the
relationships among the energy transferred, the type of	relationships among the energy transferred, the type of
matter, the mass, and the change in the average kinetic	matter, the mass, and the change in the average kinetic
energy of the particles as measured by the temperature	energy of the particles as measured by the temperature
of the sample.	of the sample.
Root Question 2	
6.2.1: Develop a model to describe the cycling of water	MS-ESS2-4. Develop a model to describe the cycling of
through Earth's systems driven by energy from the sun	water through Earth's systems driven by energy from
and the force of gravity.	the sun and the force of gravity.
6.2.2: Collect data to provide evidence for how the	MS-ESS2-5. Collect data to provide evidence for how
motions and complex interactions of air masses results	the motions and complex interactions of air masses
in changes in weather conditions.	results in changes in weather conditions.
6.2.3: Develop and use a model to describe how	MS-ESS2-6. Develop and use a model to describe how
unequal heating and rotation of the Earth cause	unequal heating and rotation of the Earth cause
patterns of atmospheric and oceanic circulation that	patterns of atmospheric and oceanic circulation that
determine regional climates.	determine regional climates.
6.2.4: Ask questions to clarify evidence of the factors	MS-ESS3-5. Ask questions to clarify evidence of the
that have caused the rise in global temperatures over	factors that have caused the rise in global temperatures
the past century.	over the past century.
Root Question 3	
6.3.1: Analyze and interpret data to provide evidence	MS-LS2-1. Analyze and interpret data to provide
for the effects of resource availability on organisms and	evidence for the effects of resource availability on

6th Grade

populations of organisms in an ecosystem.	organisms and populations of organisms in an ecosystem.
6.3.2: Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.	MS-LS2-2. Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.
6.3.3: Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.	MS-LS2-3. Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.
6.3.4: Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.	MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
6.3.5: Evaluate competing design solutions for maintaining biodiversity and ecosystem services.	MS-LS2-5. Evaluate competing design solutions for maintaining biodiversity and ecosystem services.
6.3.6: Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Root Question 4	
6.4.1: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.	MS-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.
6.4.2: Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
6.4.3: Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.	MS-ESS3-4. Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.